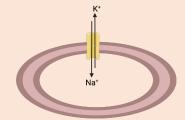

ANTIBIOTIC PROTEIN

Gramicidin

- naturally occurring antibiotic protein secreted by the soil bacterium *Bacillus brevis*
- disrupts normal movement of ions across a biological membrane

nonconducting monomers

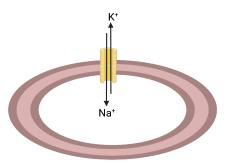
conducting dimer


 dimerization within the membrane is required for gramicidin to form a functional channel for ion diffusion¹

STRUCTURE

- dimer, made of two small polypeptide chains (15 amino acids each)
- each chain forms a helix
- helices are connected by hydrogen bonds, forming a channel
- hydrophobic (water-fearing) amino acid side chains extend out from the helix backbone and interact with membrane lipids

FUNCTION


- forms a transmembrane channel facilitating diffusion of ions (H⁺, Na⁺, K⁺)
- diffusion of ions disrupts the natural ion distribution, causing cell death
- produced by bacteria (Bacillus brevis) to destroy competitors (a variety of bacteria and fungi) in the same environment

- diffusion occurs along the concentration gradients of ions
- sodium ions (Na+) flow into the cell, and potassium ions (K+) flow out of the cell

Application to Human Health^{1,2}

- first antibiotic to be manufactured and used clinically
- used as a topical (surface) antibiotic to treat wounds, skin infections, and some eye, nose, and throat infections
- cannot be taken internally because it causes the same effects in human cells as it does in bacteria, causing the cells to break open and die
- may be a useful drug for some types of cancer and research is looking for an effective way to deliver gramicidin to cancer cells without allowing it to kill normal cells

References

David JM, Rajasekaran AK. (2015) J. Kidney Cancer VHL 2(1):15-24. Takada Y, et al. (2020) Nat Commun 11:4935.